was hydrogenated¹⁰ in the presence of 0.3 g. of palladium-oncharcoal (5%) catalyst¹⁷ under an initial pressure of 30 pounds until the required amount of hydrogen had been absorbed. The residue, obtained after removal of the catalyst and the solvent, was mixed with 500 cc. of 48% hydrobromic acid and was stirred and refluxed for 48 hours. The mixture was poured into ice-water, the layers were separated and the aqueous layer was extracted with ether. The combined organic layer and ether extract were washed with water and then extracted with sodium bicarbonate solution. The alkaline solution was washed with ether, cooled in an ice-bath and made strongly acidic with dilute sulfuric acid. The oily precipitate was separated and the aqueous layer was extracted with ether. From the combined dried oil and extract, 31 g. of product was obtained, b.p. 208-210° (732 mm.). Anal. Calcd. for C₇H₁₄O₂: neut. equiv., 130.2. Found: neut. equiv., 131.2. The infrared spectrum was identical with that of the product V obtained from crotonic acid and isopropylmagnesium chloride.

The amide (m.p. and mixed m.p. $137-138^{\circ}$) and the anilide (m.p. and mixed m.p. $110-111^{\circ}$) were prepared from the acid chloride.

α-(1-Hydroxycyclohexyl)-β-isopropylbutyric Acids (VI).— Crotonic acid (17.2 g.), dissolved in 400 cc. of ether, was added slowly to isopropylmagnesium chloride prepared from 10.7 g. of magnesium, 50 cc. of isopropyl chloride and 100 cc. of ether. After the addition of a solution of 23.5 g. of cyclohexanone in 100 cc. of ether, the mixture was refluxed for 4 hours. The material was poured into cold ammonium chloride solution and treated in the usual manner. Strong acidification of the aqueous layer yielded a white solid (18.2 g.) which was triturated with 150 cc. of ice-cold petroleum ether (30-40°). The material was extracted with 200 cc. of boiling petroleum ether (90-100°) and then filtered. After this process had been repeated, the residue (8.9 g.) was recrystallized from methyl ethyl ketone; m.p. 194-196° dec.

Anal. Calcd. for C₁₃H₂₄O₃: C, 68.38; H, 10.59; neut.

(17) Purchased from Wilkens-Anderson Company, Chicago, Ill.

equiv., 228.3. Found: C, 68.10; H, 10.41; neut. equiv., 227.8.

The combined petroleum ether extracts were refrigerated whereupon 6.4 g. of product precipitated, m.p. $131-135^{\circ}$ dec. after recrystallization from petroleum ether (90-100°).

Anal. Calcd. for C₁₃H₂₄O₃: C, 68.38; H, 10.59; neut. equiv., 228.3. Found: C, 68.23; H, 10.69; neut. equiv., 227.3.

 α -(Phenylcarbamyl)- β -isopropylbutyric Acid (VII).— After the preparation of isopropylmagnesium chloride from 5.4 g. of magnesium, 25 cc. of isopropyl chloride and 50 cc. of ether, the solution was stirred and 8.6 g. of crotonic acid, dissolved in 300 cc. of benzene, was added. The mixture was refluxed for 18 hours, a solution of 14.4 g. of phenyl isocyanate in 50 cc. of benzene was added and the mixture was refluxed for 4 hours. The material was poured into an ice-cold solution of 20 cc. of concentrated sulfuric acid in 250 cc. of water. The aqueous layer was extracted with ether, the extract was combined with the organic layer, the solution was washed with water and then extracted with 400 cc. of 10% potassium carbonate solution. The alkaline extract was washed with ether, cooled in an ice-bath, stirred and 15 cc. of concentrated sulfuric acid dissolved in 150 cc. of water was added. The gummy precipitate was extracted with ether and the solvent was removed from the dried extract under an air jet. The residue was washed with cold petroleum ether (30-40°) and crystallized from 150 cc. of benzene; yield 9.0 g. The product sintered at 128° and melted at 134° dec. after recrystallization from benzene.

Anal. Calcd. for $C_{14}H_{19}O_2N$: C, 67.44; H, 7.68; N, 5.62; neut. equiv., 249.3. Found: C, 67.34; H, 7.84; N, 5.56; neut. equiv., 247.8.

When the acid (1.5 g.) was heated for 1 hour in an oilbath (200°), a gas was evolved. The solidified residue, β -isopropylbutyranilide, was recrystallized from petroleum ether (90–100°); yield 1.0 g., m.p. and mixed m.p. 110–111°.

ANN ARBOR, MICH.

[CONTRIBUTION FROM THE COLLEGE OF PHARMACY, UNIVERSITY OF MICHIGAN]

Antispasmodics. XXII. β -Diethylaminoethyl Esters of β -Substituted α -Phenyl- β -hydroxypropionic Acids

By F. F. BLICKE AND R. H. COX^{1,2}

Received June 9, 1955

Eighteen salts of β -diethylaminoethyl β -substituted α -phenyl- β -hydroxypropionates have been described. The required acids were obtained by the Ivanov reaction. The antispasmodic activity has been reported.

A number of investigators³⁻⁵ have shown that basic alkyl esters of β -substituted α -phenyl- β -hydroxypropionic acids are potent antispasmodics. The required acids were obtained from phenylacetic acid by the use of the Ivanov reaction.

During this investigation, we prepared a number of β -substituted α -phenyl- β -hydroxypropionic acids (Table I) by interaction of the Ivanov reagent, $C_6H_5CH(MgCl)COOMgCl$, with the following aldehydes and ketones: hexaldehyde,⁶ anisaldehyde, 2methyl- and 3-methylcyclohexanone, cycloöctanone,⁷ propiophenone and 2-acetylthiophene. By

(1) This paper represents part of a dissertation submitted by R. H. Cox in partial fulfillment of the requirements for the Ph.D. degree in the University of Michigan, 1954.

(2) Sterling-Winthrop Fellow.

(3) A. W. Weston and R. W. DeNet, THIS JOURNAL, 73, 4221 (1951).

(4) G. R. Treves and F. C. Testa, ibid., 74, 46 (1952).

(5) F. F. Blicke and H. Raffelson, *ibid.*, **74**, 1730 (1952).

(6) Purchased from Matheson, Coleman and Bell, Norwood, Ohio.
(7) F. F. Blicke, J. Azuara, N. Doorenbos and E. B. Hotelling. *ibid.*, **75**, 5418 (1963).

the Horenstein and Pählicke procedure⁸ some of the acids were converted into hydrochlorides of their β -diethylaminoethyl esters; a variety of quaternary bromides of the esters were also prepared (Table II).

An attempt to obtain β -diethylaminoethyl α,β diphenyl- β -hydroxyvalerate from the required acid and β -diethylaminoethyl chloride, by the Horenstein and Pählicke process, yielded only β -diethylaminoethyl phenylacetate and propiophenone. β -Diethylaminoethyl α -phenyl- α -(1-hydroxycyclooctyl)-acetate was obtained in 73% yield from the required acid and the basic alkyl halide; however, a small amount of cycloöctanone was present in the reaction mixture which showed that some cleavage of the acid or ester had occurred.

When α -phenyl- α -(1-hydroxycyclohexyl)-acetic acid was distilled under 15 mm. pressure, cyclohexanone was present in the distillate; however, the bulk of the acid distilled unchanged.

(8) H. Horenstein and H. Pählicke, Ber., 71, 1644 (1938).

		; 4 from	ugen Found	8.65	6.09	5.35	6.95	8.13		8.20	8.36	5.5° dec. t melted ion from H, 5.92; ie to the and hud	Anti- spasmodic activity/	100.0			51.0 4.0 51.0
		(e0-209)	Hydrugen Caled. Fo	8.53	5.92	5.38	6.71	8.12		8.12	8.45	, m.p. 13(ind then i ystallizat ystallizat yrior is dr twior is dr larkened X X 13, 14, 15	թող	19.78	9.47	18.41	$9.11 \\ 17.84$
	COHRR')COOH	Compound 1 was recrystallized from benzene; 2 from butanol-toluene; 3 from ethanol-petroleum ether (60–70°); 4 from ethanol-methyl ethyl ketone; 5 and 6 from methyl ethyl ketone; 7 from toluene.	, % icn Found	71.17	70.50	64.30	75.40	72.61		72.68	73.42	5 (1932) (100%) a 0.400%) a rther recr rther recr $h_{6}\Lambda_{16}\Lambda_{1}$ G $h_{6}\Lambda_{1}$ $h_{6}\Lambda_{1}$ S 10, 11, 11	Halogen Caled. Po		9.53		9.18 17.98
			Analyses, % Carhon Caled. Fo	71.16	70.57	64.09	75.53	72.55		72.55	73.26	 51, 132 1 ether (9) 1 ether (10) 5, after fin 6, 1, 10 1, 10	gen Found	3.52	3.79		3.60 3.14
	C ₆ H ₅ CH(C		niv. Found	236.3	272.0	262.0	270.1	247.4		249.0	262.3	<i>chim.</i> , [4] petroleum Finally nul. Cal oubtedly, emperatu ()COOCI.	Analyses, % Nitrogen nd Caled. Pou		3.77		3.15 3.15
	: Acros, C	thyl ethy	Nent. equiv. Caled. Found	236.3	272.3	262.3	270.3	248.3		248.3	262.3	Bull. soc. ethanol- ethanol- 162° dec 19%. A 2. Undd 1 room ti COHRR (COHRR	Алаl Ilydrogen aled Роипd	8.04	9.19	8.64	$9.46 \\ 8.59$
Гавьк І	PROPIONIC	anoltolu fron me	_									Vicolov (, zed from d at 16)- ec.; yield miv., 273 weeks a weeks a CeH ₆ CH(from iso	IIydr Caled	8.02	9.21	8. 1 3	9.40 8.62
T	β-Substituted α-Phenyl-β-invdroxypropionic Acids, C ₆ H ₅ CH(COHRR')COOH	from but 5 5 and 6	Pornula	$C_{14}H_{20}O_3$	C ₁₆ H ₁₆ O ₄	C141114O3S	$C_{17}II_{18}O_3$	$C_{15}H_{26}O_3$		C ₁₅ 11 ₂₅ O ₃	$C_{16}H_{22}O_3$	id N. I. ? ecrystalli ecrystalli 8-170° di neut. eq neut. eq neut. eq neut. eq neut. eq nontres, foblicue.	Carbon d. Found	55.42	(54.47)	53.76	65.30 59.11
		rzene; 2 1 ketone;	Yield, $\%$	53	·p.c 71	37	35	39		17	12	vanov an cc.) was r ullizatiou ted at 16 II, 6.30; yl. Afte acctylthi acctylthi oxyrevor or ether	Car Caled.	56.71	64.59	58.60	65.35 59.45
		zed from ber -methyl ethy	M.P. C.	1110-111	$139 \cdot 140^{a,b,c}$	$162 \ 163^{a}$	$197-198^{a}$	126-129		1:94 195	162 -163	ion. ^b D. I 139.140° do ther recrystic al which mel- s. $C_7 70.63$, z_{-4}^{-2} 2 Thion eteristic of 2 eteristic of 2 e	Pormula	C ₁₄ 11 ₃ ,O ₃ NBr	C ₂₀ H ₃₁ O ₃ NCI	$C_{21}H_{36}O_3NBr$	C21 H36O3NC1 C27 H38O3NBr
		as recrystalli ethanol	R'	C ₆ H ₁₁	4-CH ₃ OC ₆ H ₄	$2-C_4II_3S^d$	Σ_6H_5	-CH(CH ₃)(CII ₂) ₃ -		-CH ₂ CH(CH ₃)-	(CH ₂) ₂ CH ₂ — -CH ₂ (CH ₂) ₅ CH ₂ —	^a McHed with decomposition. ^b D. Ivanov and N. I. Nicolov (Bull. soc. chim., [4] 51, 1325 (1932)), m.p. 136.5 ^o dec. ^c The acid (yield 71%, m.p. 139–149° dec.) was recrystallized from ethanol-petroleum ether (90–100°) and then it melted at 148–150° dec. After another recrystallization, it melted at 169–162° dec. Finally, after further recrystallization from ethanol, an acid was obtained which melted at 168–170° dec. Finally, after further recrystallization from ethanol, an acid was obtained which melted at 168–170° dec. Finally, after further recrystallization from ethanol, an acid was obtained which melted at 168–170° dec. Finally, after further recrystallization from ethanol, an acid was obtained which melted at 630; neut. equiv. 273.2. Undoubtedly, the described behavior is due to the presence of diasterosisoners. ^d 2: Thioryl. After several weeks at room temperature, this acid had darkened and had acquired a strong odor characteristic of 2-acetylthiophene. DETIVI. β-SUBSTITUTED <i>a</i> -PHENVI.β-HYDROXPROPIONATES, CellSOCH4CH ₂ CH ₂ /SH ₂ /SY, CellA ₂ , E [*] , I5, 16, 16, 16, and had presence of diasterosisoners. ^d 2: Thioryl. After several weeks at room temperature, this acid had darkened and had acquired a strong odor characteristic of 2-acetylthiophene. DETIVI. β-SUBSTITUTED <i>a</i> -PHENVI.β-HYDROXPROPIONATES, CellSOCH4CH ₂ CH ₂ /SH ₂ /SY, E, I5, 16, 16, and had behavior 2 and 4 from benzene ether; 3 and 5 from isopropyl alcohol ether; 6, 7, 8, 10, 11, 13, 14, 15, 16 and	Yield, दू	C.	SO Ca		05 05 05
		mpound 1 w	К	Н	H 4	CH ₃ 2	C ₂ H, C ₆ H,	- CH(C	CH ₂ –	CH ² CI	$(CH_2)_2CH_2 - CH_2(CH_2)_5C$	^a Metted with the acid (yiel 148 -150° dec acids an acid at to a cit at the acid at the acid ath	M.P.	135 -136	106 - 107	101 - 103	102 - 103 111113
Ta min (9 resp cont choi	ble ned) T ons tract	e ant II, b lattl `he con e curve ture of (effecti	ased on the Steens centra es, whice the iso ive conc	no on tion h is late	die tha ng ex dr	at -V at pec abb	of Vir rop ted	ivi atr ith ine to : leur EC	op roj sul redu n in 260),	ine p R lfate loce duc usu	e sul e, de by 50 ed by ally	compounds in fate, was deter- arch Institute. ⁹ remined from dose % the height of the 1:1.000,000 acetyl-	R^X	$CH_{a}Br^{a}$	11CI	CII ₃ Br	HCl ^b CH ₃ Br
strij the rang Dou deso The test deto sulf	ps is may ge n n or nd cribe rap. ed f ermi ate	s so va nention der to in con ed by , 110, for act ine the divideo	riable t effectiv ned abo obtain nparison F. P. I 282 (ivity, t EC ₅₀ fo d by th	hat ve d ve. vali 1 w Judi 1954 he s or a e E(id d ith uen (1)), san tro: C50	ion lata th a a w ne s pino fou	giv is wi e a und as segn e su nd	en f mu th s ctiv A. ado nen lfat for	test, ch g resp vity M. ptec ts c ;e. the	it grea of La d. of th con	is no ter o to th atrop nds Whe ne in e EC npour	e activity of a com		$C_{3}H_{2}$	C ₆ H ₁	C ₅ H ₁	C,H, C,H,
atro	opin % 4 co n	e sulfa Acti vi t 1pd.tes	the acti of the sted (X)	vity e) 1/	7. /50	F01	; ez	am 10 (1	ple EC₅	o of		$\frac{1}{100} = 50\%$	R R	Н		H	
			t.S.) =	~ r	172	റ,0	00,0	J UU	(190	. jų (и Х)	0.5	<u>:</u>	-	101	ŝ	<u>ل</u> ا بله

\$] asmou	activityf	100.0			5.4 1	53.0	118.2	70.5	28.0	33.3	11.5	32.4		27.5	16.7	80.4	47.6	40.8	52.9	e The hydrochloride, ^{3–3} We obtained the required
nalogen	Found	19.78	9.47	18.41	9.11	17.84	18.00	17.52	15.85	14.94	9.27	17.90	9.16	18.00	17.00	18.00	17.01	8.97	17.45	he hydroo stained th
uaic	Caled.	19.86	9.53	18.57	9.18	17.98	18.06	17.58	15.84	15.01	9.23	18.06	9.23	18.06	17.06	18.06	17.06	8.91	17.51	
ogen	Pound	3.52	3.79	3.26	3,60	3.14	3.14	3.04	2.75	2.58	3.62	3,15	3.70	3. 15	2.91	3.15	2.92	3.64	3.15	anov and N. I. Nicolov, $Bulk$ soc. $chim$, [4] 51, 1325 (1935) [*] The hydrochloride and methiodide have been reported. ⁴ % of atropine sulfate.
THE.	Caled. Pou	3.48	3.77	3.25	3.63	3.15	3.17	3.08	9.78 1.78	5 10 10	3.65	3.17	3.65	3.17	2.99	3.17	2.99	3.52	3.07	[4] 51, we been
ragen	Caled Found	8.04	9.19	8.64	9.46	8.59	8.58	8.14	7.72	7.05	8.92	8.24	9.00	8.32	8.35	8.25	8.21	9.10	8.46	<i>c. chim.</i> , iodide lia
TIYA	Caled	8.02	9.21	8,43	9.40	8.62	8.20	8.00	7.59	7.19	8.93	8.21	8.93	8.21	8.18	s. 21	s. 18	9.18	8.39	, <i>Bull. so</i> nd methi
Če III	Found	56.42	64.47	53.76	65.30	59.11	59.36	60.62	64.31	63.02	65.80	59.54	65.78	59.97	61.27	59.93	61.27	65.03	60.68	Nicolov, hloride a nlfate.
Carboll	Caled.	56.71	64.59	58.60	65.35	59.45	59.72	60.78	64.28	63.16	65.69	59.71	65.69	59.71	61.53	59.71	61.53	66.35	60.51	und N. I. e hydroe utropine s
	Pormula	C ₁₉ 11 ₃₂ O ₃ NBr	C.mHaONCI	C ₂₁ H ₃₆ O ₃ NBr	C ₂ H ₃₆ O ₃ NCI	C ₂₂ H ₃₈ O ₃ NBr	I _{a6} O ₃ NBr	C21H3sO3NBr	C ₂₇ H ₃₈ O ₃ NBr	C ₂₈ H ₃₈ O ₄ NBr	I310 NCI	C22 II36O3NBr	C ₂₁ H34O5NCI	De2H36O3NBr	C34!138O4NBr	C22H36O3NBr	2.4 H38O3 NBr	C ₂₂ H ₃₆ O ₃ NCI	C2. HasO3 NBr	serihed (D. Ivanov and N. I. Nico decomposition. ^{e} The hydrochlorid ^{ℓ} Expressed as $\%$ of atrophic sulfate
	2	C. F	C. B	C ₂ , H	C ₂ H	C."T	J.	C. L	C.1	C.28.1	Cal	5	<u>ت</u>	0.1	C.S.	C.	C.1	<u>с</u>	C_{2}	cribed (ceompos Express
_					$\frac{3}{2}$						60		25					8		 Since
Yield,			9%. ??		0								10							vith °.
	Č.	135 -136		101 - 103		111113	175-176	152 - 154	$172 - 174^{4}$	$200 - 202^{d}$	158-160	$190 - 192^{d}$	150-152 5	195 - 195	143 - 145	194 - 196	153 - 155	144-146	153-158	cid has been $\frac{d}{d}$ Melted with as only 20^{07} .
M.D.,		CH ₃ Br ⁴ 135 -136	106-107		102 -103	CH ₃ Br 111-113					158-160		150 - 152	-	CHCH ₂ Br 1	CH ₃ Br ^e 194–196	HCII ₂ Br 1	144-146	CH ₃ Br 153 -158	d. ³ ^b The required acid has been described (D. F ave been reported. ^d Melted with decomposition siy reported yiel. ¹⁴ was only 20^{07} . ^f Expressed as
M.D.,	, v		11Ci 106–107	CHaBr	IHCI ^b 102 -103	CH ₃ Br	CyH,Br	- CH ₃ =CHCH ₃ Br	- C6H5CH2Br	C,H,COCH.Br	– HCI 158-160	- CH ₃ Br	$M_{2^{-}}$ - HCl 150–152	- CII ₃ Br 1	CH2=CHCH2Br 1	CH ₃ Br ^e 1	CH ₂ CHCH ₂ Br 1	HCI 141-146	C(I ₃ Br 1	cchloride has been reported. ³ ^{b} The required acid has been e ⁴ and methobrounide ⁵ have been reported. ^{d} Melted with ield although the previously reported yiel ⁴ was only 20° .
M.D.,	, v	CIH ₃ Br ⁴	11Ci 106–107	CHaBr	IHCI ^b 102 -103	CH ₃ Br	C,H,Br	- CH,=CHCH,Br	- C ₆ H ₅ CH ₂ Br	C,H,COCH.Br	158-160	- CH ₃ Br	$M_{2^{-}}$ - HCl 150–152	- CII ₃ Br 1	- CH2=CHCH2Br 1	_	CH ₂ CHCH ₂ Br 1	HCI 144-146	C(I ₃ Br 1	^{<i>a</i>} The hydrochloride has been reported. ^a ^b The required acid has been described (D. Ivanov and N. I. Nicolov, Bull. soc. chim., [4] 51, 1325 (1932)) the methiodide ⁴ and methobrounide ⁵ have been reported. ^{<i>a</i>} Melted with decomposition. ^{<i>a</i>} The hydrochloride and methiodide have been reported. ^{<i>a</i>} Melted with decomposition. ^{<i>a</i>} The hydrochloride and methiodide have been reported. ^{<i>a</i>} Melted with decomposition. ^{<i>a</i>} The hydrochloride and methiodide have been reported. ⁴ acid in 69^{σ} , yield although the previously reported yield ⁴ was only 20^{σ} . ^{<i>i</i>} Expressed as % of atropine sulfate.

ŕΣ

Experimental

The yields of the acids reported in Table I were those obtained when the Ivanov reagent, prepared from 0.5 mole of phenylacetic acid dissolved in 300 cc. of benzene and iso-

propylmagnesium chloride obtained from 1 mole of magnesium, 1.15 moles of isopropyl chloride and 1200 cc. of ether, was allowed to react with 0.55 mole of the required aldehyde or ketone.

ANN ARBOR, MICH.

[CONTRIBUTION FROM THE COLLEGE OF PHARMACY, UNIVERSITY OF MICHIGAN]

Antispasmodics. XXIII. Basic Esters of β -Substituted α -Cyclohexyl- β -hydroxypropionic Acids

BY F. F. BLICKE AND R. H. COX^{1,2}

RECEIVED JUNE 9, 1955

 α -Cyclohexyl- β -hydroxypropionic acid and sixteen β -substituted α -cyclohexyl- β -hydroxypropionic acids were prepared by hydrogenation of the corresponding α -phenyl- β -hydroxypropionic acids. Hydrochlorides and methobromides of the basic esters of these acids have been described and the antispasmodic activity of some of the compounds has been reported.

Recently, a number of basic esters of β -substituted α -phenyl- β -hydroxypropionic acids have been reported to be potent antispasmodics.3-6 During this investigation, basic esters of α -cyclohexyl- β hydroxypropionic acid and β -substituted α -cyclohexyl- β -hydroxypropionic acids have been synthesized. Each α -cyclohexyl acid was prepared by low pressure hydrogenation of the corresponding α - phenyl- β -hydroxypropionic acid⁷ in the presence of platinum oxide catalyst.

We know of only two reports which describe the hydrogenation of α -phenyl- β -hydroxy acids or their derivatives to the corresponding α -cyclohexyl compounds: Miescher and Hoffmann⁸ hydrogenated catalytically salts of atropine and scopolamine to the corresponding hexahydroatropine and hexa-

TABLE I

 α -Cyclohexyl- β -hydroxypropionic Acid and β -Substituted α -Cyclohexyl- β -hydroxypropionic Acids,

C₆H₁₁CH(COHRR')COOH

Compounds 1, 3, 4, 5, 6, 9, 12 and 13 were recrystallized from benzene; 2, 7, 8, 11, 14 and 17 from toluene; 10 from benzene-petroleum ether; 15 from methyl ethyl ketone; 16 from methyl ethyl ketone-petroleum ether (90-100°).

			Mn	Yield, ^a		Neut	equiv.	Analy Car	ses, %	Hydrogen		
	R	R'	М.р., °С.	%	Formula	Caled.	Found	Caled.	Found	Caled.	Found	
1	н	н	89-90	90	$C_9H_{16}O_3$	172.2	171.9	62.77	62.69	9.36	9.43	
2	Н	CH₃	140 - 142	84	$C_{10}H_{18}O_{3}$	186.2	186.7	64.49	64.80	9.74	9.56	
3	Н	$C_2H_{\mathfrak{d}}$	99-101	83	$C_{11}H_{20}O_3$	200.3	200.0	65.97	65.82	10.07	10.43	
4	Н	$C_{3}H_{7}$	99-100	76	$C_{12}H_{22}O_3$	214.3	213.4	67.25	67.00	10.35	10.23	
5	Н	i-C ₃ H ₇	119 - 121	79	$C_{12}H_{22}O_3$	214.3	214.8	67.25	67.55	10.35	10.49	
6	Н	C_5H_{11}	98-99	88	$C_{14}H_{26}O_3$	242.3	241.5	69.38	69.28	10.81	10.71	
7	Н	$C_{6}H_{11}{}^{b,c}$	184 - 186	89	$C_{15}H_{26}O_3$	254.4	253.4	70.82	70.63	10.30	10.02	
8	Н	$C_{6}H_{13}$	93-94	81	$C_{15}H_{28}O_3$	256.4	256.1	70.27	70.39	11.01	11.25	
9	CH3	CH3	107 - 108	93	$C_{11}H_{20}O_3$	200.3	200.6	65.97	65.76	10.07	10.14	
10	CH3	C_2H_5	89-90	72	$C_{12}H_{22}O_3$	214.3	214.7	67.25	67.46	10.35	10.46	
11	CH₃	$C_{6}H_{11}^{b.c}$	141–143d.	72	$C_{16}H_{28}O_{3}$	268.4	268.0	71.60	71.35	10.52	10.60	
12	C_2H_{δ}	C_2H_5	84-86	82	$C_{13}H_{24}O_3$	228.3	229.1	68.39	68.37	10.59	10.56	
13	C_3H_7	C₃H;	116 - 118	91	$C_{15}H_{28}O_3$	256.4	255.4	70.27	70.59	11.01	10.97	
14		$CH_2)_3CH_2$	156 - 157	85	$C_{14}H_{24}O_3$	240.4	239.3	69.97	70.13	10.07	10.09	
15	$-CH_2C$	CH(CH ₃).	142 - 144	71	$C_{15}H_{26}O_3$	254.4	254.9	70.82	70.63	10.30	10.36	
	$(CH_2$	$)_2CH_2$										
16	$-CH_2C$	CH₂CH·	159 - 160	73	$C_{15}H_{26}O_3$	254.4	254.0	70.82	70.83	10.30	10.41	
	(CH ₃	$)CH_2CH_2$										
17		$CH_2)_5CH_2$	147 - 149	67	$\mathrm{C_{16}H_{28}O_{3}}$	268.4	268.0	71.60	71.53	10.52	10.53	

^a In five instances (compounds 1, 2, 14, 16 and 17) hydrogenation was also carried out at 60-70°; in each case the crude reaction product proved more difficult to purify, and the yield of pure product was lower. ^b Cyclohexyl. ^c This acid was prepared from the corresponding α,β -diphenyl acid by hydrogenation of both aromatic rings. This acid, m.p. 141–143°, was obtained by refluxing the recrystallized hydrogenation product (m.p. 129–132°) with a 100% excess of 2% sodium hydroxide solution, followed by acidification.

(1) This paper represents part of a dissertation submitted by R. H. Cox in partial fulfillment of the requirements for the Ph.D. degree in the University of Michigan, 1954.(2) Sterling-Winthrop Fellow.

(3) A. W. Weston and R. W. DeNet, THIS JOURNAL, 73, 4221 (1951).

(4) G. R. Treves and F. C. Testa, ibid., 74, 46 (1952).

(5) F. F. Blicke and H. Raffelson, ibid., 74, 1730 (1952).

(6) F. F. Blicke and R. H. Cox, ibid., 77, 5399 (1955).

hydroscopolamine salts; Raffelson⁹ hydrogenated α, α -diphenyl- β -hydroxypropionic acid to α -phenyl- α -cyclohexyl- β -hydroxypropionic acid.

(7) The α -phenyl- β -hydroxypropionic acids which were hydrogenated have been described previously.5"

(8) K. Miescher and K. Hoffmann, U. S. Patent 2,265,185; C.A.. 36, 1737 (1942).

(9) H. Raffelson, Dissertation, University of Michigan, 1951.